Edexcel Maths GCSE - Sine Rule, Cosine Rule and Area (H)

(a)	130	P1 start to process eg draw a labelled triangle or use of
1		sine rule $\frac{\sin Q}{\sin 2} = \frac{\sin 32}{\sin 32}$
		sine rule $\frac{1}{87} = \frac{52}{52}$
		0.7 5.2
		P1 . [sin 32]
		process to find of Q eg Q = $\sin^{-1} \left[\frac{\sin 32}{5.2} \times 8.7 \right]$
		5.2
		P1 process to find area of triangle PRQ.
		A1 22.5 – 22.6
(b)		C1 angle <i>PRQ</i> is obtuse so need to find area of two triangles.

2		Proof	B1	(indep) for stating $\cos 30 = \frac{\sqrt{3}}{2}$
			M1	for $PQ^2 = 10^2 + 10^2 - 2 \times 10^2 \times 10 \times \cos PBQ$ or $AC^2 = x^2 + x^2 - 2 \times x \times x \times \cos 30 (=x^2(2-\sqrt{3}))$ oe
				for $\cos PBQ = \frac{10^2 + 10^2 - PQ^2}{2 \times 10 \times 10}$ (implies previous M1)
	$\cos PBQ = 10^2 + 10^2 - x^2(2 - \sqrt{3})$		М1	for $\cos PBQ = \frac{10^2 + 10^2 - (x^2 + x^2 - 2 \times x \times x \times \cos 30)}{2 \times 10 \times 10}$
	200			
	$=\frac{200-x^2(2-\sqrt{3})}{200}$			
			A1	conclusion of proof with all working seen

2	 2.63	P1	for setting up the expression $\frac{1}{2}(x+3)(2x-1) \sin 45$ (may be seen in an equation)
5		P1	(dep) for expanding the brackets in the expression or for the equation
			$\frac{1}{2}(x+3)(2x-1)\sin 45 = 6\sqrt{2}$ oe
		P1	(dep) for the process to set up the equation and rearrange to the form $ax^2 + bx + c = d$ e.g. to $2x^2 + 5x - 27 = 0$ or $24 = 2x^2 + 5x - 3$
		P1	(dep) for substitution into the quadratic formula e.g. $\frac{-5\pm\sqrt{5^2-4\times2\times-27}}{4}$
		A1	for 2.63(10436)

4	14.4	P1	for start of process, eg $0.5 \times 11 \times CD \times \sin 105 = 56$
		P1 P1 P1 A1	for complete process to find CD, eg (CD =) $\frac{56}{0.5 \times 11 \times \sin 105}$ oe (= 10.54) for process to find AC, eg (AC ² =) 11 ² + [CD] ² - 2×11×[CD] ×cos105 (AC = 17.09) for process to find AB, eg $\frac{AB}{\sin 48} = \frac{[AC]}{\sin 118}$ answer in range 14.3 to 14.4

5	13.1	P1	for start of process to find the length of <i>BD</i> , $eg \frac{BD}{\sin 34^{\circ}} = \frac{12.5}{\sin 109^{\circ}}$	
		P1	for complete process to find the length of <i>BD</i> , eg $BD = \frac{12.5}{\sin 109^\circ} \times \sin 34^\circ$ (= 7.39)	Accept 7.4 for the award of the first two P marks
		P1	for process to find the length of <i>AD</i> , eg $AD^2 = 11.4^2 + "7.39^2 " - 2 \times 11.4 \times "7.39" \times \cos 86^\circ$	
		P1	for process to use correct order of operations, eg 129.96 + 54.6(5) – 11.7(5) (= 172.85)	
		A1	for answer in the range 13.1 to 13.2	If an answer is given within the range and then incorrectly rounded to 3 sig figs award full marks.

6	36	P1	for process to find an expression for the area of triangle	Accept any correct expression,
6			$eg \frac{1}{2} \times 24 \times AE \times \sin 30 (= 6AE)$	$eg \frac{1}{2} \times 24 \times y \times \sin 30$
		P1	(dep P1) for process to link the area of rectangle with the area of the triangle eg $2 \times \frac{1}{2} \times 24 \times AE \times \sin 30$ (= 12 <i>AE</i>) or for <i>AB</i> = 12	
		P1	(indep) for use of given ratio eg $AE = 3AB$ oe, eg area of rectangle = $AE \times AB = 3x \times x$	May be shown on the diagram by labelling AE and AB with, for example, $3x$, x or x , $\frac{1}{3}x$ or $\frac{3}{4}x$, $\frac{1}{4}x$ Do not accept 3, 1 or 1, $\frac{1}{2}$ or $\frac{3}{2}$, $\frac{1}{4}$ for this mark.
		A1	cao	Do not accept 5, 1 or 1, $\frac{-01}{3}$ $\frac{-1}{4}$ $\frac{-101}{4}$ this mark.

7	098.6	P1	for using bearings to determine ABC as 67°	Accept 67 written on the diagram.
		P1	for using the cosine rule to find <i>AC</i> eg (<i>AC</i> ² =) $9^2 + 8^2 - 2 \times 9 \times 8 \times \cos[67]$ oe or AC = 9.4199	Accept correct substitution into RHS of equation Accept AC in the range 9.41 to 9.42
		P1	(dep P1) for using the sine rule to find angle <i>BAC</i> eg $\frac{9}{\sin BAC} = \frac{9.42^{\circ}}{\sin[67]}$ oe	
			OR	
			for using the cosine rule to find angle <i>BAC</i> eg $9^2 = "9.42^{2"} + 8^2 - 2 \times "9.42" \times 8 \times \cos BAC$ oe	
		P1	for rearranging eg sin $BAC = 9 \times \frac{\sin[67]}{*9.42^*}$ oe	Accept any equivalent form with values substituted
			OR eg cos $BAC = ("9.42^{2"} + 8^2 - 9^2) \div (2 \times "9.42" \times 8)$ oe	
			OR for angle <i>BAC</i> = 61.57	
		A1	for angle in the range 98.5 to 98.6	If the correct answer is given without supportive evidence award 0 marks. Condone missing "0" at the front. If an answer within the range is seen in working and rounded incorrectly award full marks.

8	(a)	Shown	C1 C1	for a method to find the area of half of the parallelogram or of the whole parallelogram, eg $\frac{1}{2}(2x-1)(10-x) \sin 150$ or $\frac{1}{2}(2x-1)(10-x) \times \frac{1}{2}$ oe or $(2x-1)(10-x) \sin 150$ or $(2x-1)(10-x) \times \frac{1}{2}$ oe for a correct expansion of the whole area $= \frac{1}{2}(200 - 10) \frac{10}{2} + \frac{10}{2} \frac{10}{2} + \frac{10}{2} $	
	(b)	2.5 < x < 8	С1	eg $\frac{1}{2}(20x - 10 - 2x^2 + x)$ or $\frac{1}{2}(-2x^2 + 21x - 10)$ or $-x^2 + 10.5x - 5$ complete chain of reasoning with fully correct algebra dealing with the inequality eg $x^2 - 10.5x + 5 < -15$ or $x^2 - 10.5x + 20 < 0$ or $2x^2 - 21x + 10 < -30$ which lead to $2x^2 - 21x + 40 < 0$ for factorising, $(2x - 5)(x - 8)$	Could use the formula
		2.5 4 5	A1 A1	for critical values, 2.5, 8 for any statement that x is greater than 2.5 and x is less than 8	Need not be given as an inequality statement

9	1.95	P1	for correct substitution into the cosine rule, eg $3.4^2 = 6.1^2 + 6.2^2 - 2 \times 6.1 \times 6.2 \times \cos BCA$	Can be any angle within triangle <i>ABC</i>
		P1	for a full process to find <i>BCA</i> eg (cos <i>BCA</i> =) $\frac{6.1^2 + 6.2^2 - 3.4^2}{2 \times 6.1 \times 6.2}$ or (<i>BCA</i> =) 32(.08046913)	P2 can be awarded for <i>BCA</i> = 32(.08046913)
		P1	correct substitution into the sine rule, eg $\frac{DC}{\sin("32.08" \times \frac{2}{5})} = \frac{6.2}{\sin(180 - "32.08" - ("32.08" \times \frac{2}{5})}$	
		P1	for complete process to find <i>DC</i> eg (<i>DC</i> =) $\frac{6.2 \times \sin^{*} 12.832^{*}}{\sin^{*} 135.088^{*}}$	
		A1	Answer in the range 1.94 to 1.951	Must not come from incorrect processing

Edexcel Maths GCSE - Sine Rule, Cosine Rule and Area (H)

10	15.4	M1	for $\frac{AB}{\sin 34} = \frac{23.8}{\sin"120"}$ or $\frac{\sin 34}{AB} = \frac{\sin"120"}{23.8}$	"120" comes from 180 – 26 – 34
		M1	for $(AB =) \frac{23.8}{\sin^{11}20^{11}} \times \sin 34$	
		A1	for answer in range 15.36 to 15.4	If an answer in the range 15.36 to 15.4 is given in the working space then incorrectly rounded, award full marks
(a)	11.4	M1	for start to method to find the length of <i>BC</i> eg. $8^2 + 11^2 - 2 \times 8 \times 11 \times \cos 72$	
11		M1	(dep on M1) for method to use correct order of operations, eg. 64 + 121 - 54.38 (= 130.61)	
		A1	for answer in the range 11.4 to 11.5	If an answer within the given range is seen in working and rounded incorrectly award full marks
(b)	41.8	M1	for $0.5 \times 8 \times 11 \times \sin 72$ (= 41.8)	Any alternative method must be complete
		A1	for answer in the range 41.5 to 41.9	If an answer within the given range is seen in working and rounded incorrectly award full marks.